UNIVERSAL RADIUS OF INJECTIVITY FOR LOCALLY QUASICONFORMAL MAPPINGS

BY

OLLI MARTIO[†] AND URI SREBRO

ABSTRACT

If n > 2 and if f is a locally quasiconformal mapping from the ball $B^n = \{x \in \mathbb{R}^n : |x| < 1\}$ into $\mathbb{R}^n \cup \{\infty\}$ then f is injective in $B^n(r) = \{x \in \mathbb{R}^n : |x| < r\}$ where r > 0 depends only on n and the maximal dilatation of f.

1. Introduction

In this note we consider local homeomorphisms f of bounded dilatation from the unit ball $B^n = \{x \in \mathbb{R}^n : |x| < 1\}$ into $\overline{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$. In [6, theor. 2.3] it was shown that if $n \ge 3$ and $fB^n \subset \mathbb{R}^n$, then f is one to one in $B^n(r) = \{x \in \mathbb{R}^n : |x| < r\}$ where r depends only on n and the maximal dilatation of f. The complex functions $z \mapsto (z-1)^m$, $m = 1, 2, \cdots$, show that the result is false for n = 2. It has been an open problem whether the condition $fB^n \subset \mathbb{R}^n$ is dispensable. Here we give an affirmative answer to this question and prove

1.1. THEOREM. Suppose that $f: B^n \to \overline{R}^n$ is a quasimeromorphic local homeomorphism. If n > 3 then f is injective in $B^n(r)$ where r depends only on n and the maximal dilatation K(f) of f.

The weaker version [6, theor. 2.3] of the above theorem has been used by several authors to study various properties of quasiregular mappings, see [2, theor. 3], [6, corol. 2.7, 2.8, 2.10 and theor. 2.9], [7, theor. 6.12], and [8]. Now all these results can be extended to the quasimeromorphic case.

In our proof we shall use the methods of [10], [1], and [6, 2.3]. Notation and terminology will be as in [4], [5], and [9] but most of it will be explained in the course of the proof.

^{&#}x27; Supported in part by the Samuel Neaman Fund, Special Year in Complex Analysis, Technion, I.I.T., Haifa, Israel, 1975/76.

Received October 19, 1976

2. Proof of the theorem

2.1. We may assume f(0) = 0. For r > 0 we let U(r) denote the 0-component of $f^{-1}B^{n}(r)$. Note that since f is a local homeomorphism, f maps $\overline{U}(r)$ homeomorphically onto $\overline{B}^{n}(r)$ whenever $\overline{U}(r) \subset B^{n}$, see [6, lemma 2.2]. Let $r_{0} = \sup\{r > 0: \overline{U}(r) \subset B^{n}\}$. Clearly $r_{0} > 0$ and by Liouville's theorem for quasiregular mappings, see [4, 7.2], also $r_{0} < \infty$. Fix $r \in (0, r_{0})$ and set $l^{*} =$ $\inf\{|x|: x \in \partial U(r)\}, L^{*} = \sup\{|x|: x \in \partial U(r)\}$, and $l = \inf\{|f(x)|: |x| = l^{*}\}$. Since f is injective in $B^{n}(l^{*})$, it suffices to find a lower bound for l^{*} in terms of nand K = K(f).

2.2. Suppose that l < r. Then $A = U(r) \setminus \overline{U}(l)$ is a ring domain and f maps A quasiconformally onto the spherical ring $B^n(r) \setminus \overline{B}^n(l)$. Both boundary components of A meet the sphere $S^{n-1}(l^*)$, hence a well known capacity estimate for ring domains yields

$$\operatorname{cap}(U(r), \ \overline{U}(l)) \geq a_n > 0$$

where a_n depends only on *n*, see [4, §5], [9, 11.7]. Thus by the capacity inequality for quasiconformal mappings

$$a_n \leq \operatorname{cap}(U(r), \overline{U}(l)) \leq K \operatorname{cap}(B^n(r), \overline{B}^n(l)) = K\omega_{n-1}(\log r/l)^{1-n}$$

where ω_{n-1} denotes the (n-1)-measure of S^{n-1} . This gives

$$(2.3) r/l \leq \alpha(n, K)$$

which is also true in the case r = l.

2.4. Pick $x_0 \in \partial U(r)$ such that $|x_0| = L^*$ and set $y_0 = f(x_0)$. Then $|y_0| = r$. For $t \in (0, r+l)$ and $\phi \in (0, \pi]$ we consider the spherical cap

$$C(t, \phi) = \{y : |y - y_0| = t, \quad (y_0 - y) \cdot y_0 > rt \cos \phi \}$$

which lies on the sphere $S^{n-1}(y_0, t)$ and is symmetric with respect to the line segment $J = \{sy_0: -l/r \le s \le 1\}$ and meets J at the point $z_t = (r-t)y_0/r$. Let z_t^* be the unique point in $U(r) \cap f^{-1}(z_t)$ and let $C^*(t, \phi)$ be the z_t^* -component of $f^{-1}C(t, \phi)$. Set

$$\phi_t = \sup \{ \phi \in (0, \pi] : f \text{ maps } C^*(t, \phi) \text{ homeomorphically onto } C(t, \phi) \}$$

and

$$I = \{t \in (0, r+l) : C^*(t, \phi_t) \text{ meets } S^{n-1}(L^*)\}.$$

Note that $I \neq \emptyset$ since a neighborhood of x_0 is mapped by f homeomorphically onto a neighborhood of y_0 . Hence $t_0 = \sup\{t : t \in I\} > 0$. It was shown in [6, p.5] that if $fB^n \subset R^n$ then $t_0 = r + l$ and $I \supset (r, r + l)$. In our case this cannot be done, however, we shall prove that $I \supset (0, t_0)$ and that if $t_0 < t < r + l$ then $\overline{C}^*(t, \phi_r)$ is the boundary of a domain D_i which is contained in $B^n(L^*)$ and mapped by f homeomorphically onto $\hat{C}\bar{B}^n(y_0,t) = \bar{R}^n \setminus \bar{B}^n(y_0,t)$. To this end suppose that $t \in (0, r+l) \setminus I$. Then $C^*(t, \phi_t) \subset B^*(L^*)$. Now $C(t \phi_t)$ is simply connected, locally pathwise connected, and since $n \ge 3$ also relatively locally connected, thus by [6, lemma 2.2] f maps $\bar{C}^*(t, \phi_t)$ homeomorphically onto $\bar{C}(t, \phi_t)$. At this point the proof breaks down for n = 2 because the punctured circle $C(t, \pi)$ is not relatively locally connected. Since $\bar{C}^*(t, \phi_t)$ is compact in B^n and f is a local homeomorphism and injective in $\overline{C}^*(t, \phi_i)$, it follows, see [10, remark 1, p. 422] that f is injective in a neighborhood of $\overline{C}^*(t, \phi_i)$. Consequently $\phi_i = \pi$ and this means that $\bar{C}^*(t, \phi_t)$ is a topological sphere. Thus the bounded component D_t of $C\bar{C}^*(t,\phi_t)$ is contained in $B^n(L^*)$. Now f maps D_t either onto $B^n(y_0,t)$ or onto $C\bar{B}^{n}(y_{0}, t)$, and since both domains are simply connected and f is a local homeomorphism sending ∂D_t injectively onto $S^{n-1}(y_0, t)$, the restriction $f | \overline{D}_t$ is a homeomorphism. But $fD_t = B^n(y_0, t)$ is impossible because f would be injective in $D_t \cup U(r)$ as $D_t \cap U(r) \neq \emptyset$ and $B^n(y_0, t) \cap B^n(r)$ is connected, see [10, remark 2, p. 422], while $f(x_0) = y_0$ and $x_0 \notin D_t$. Hence $fD_t = C\overline{B}^n(y_0, t)$. Furthermore, if t' > t then $S^{n-1}(y_0, t') \subset fD_t$ and thus $\phi_{t'} = \pi$ and $\overline{C}^*(t', \phi_{t'}) \subset D_t$. Consequently, $t' \notin I$.

- 2.5 We have proved that
- (i) I is an interval,
- (ii) $(0, t_0) \subset I$, and

(iii) for $t_0 < t < r + l$, f maps D_t homeomorphically onto $C\bar{B}^n(y_0, t)$. Since $D_t \subset B^n(L^*)$ for $t_0 < t < r + l$, it easily follows that $\phi_{t_0} = \pi$ and the bounded component D_{t_0} of $C\bar{C}^*(t_0, \phi_{t_0})$ is contained in $B^n(L^*)$, ∂D_{t_0} meets $S^{n-1}(L^*)$, and f maps \bar{D}_{t_0} homeomorphically onto $CB^n(y_0, t_0)$.

We consider two cases:

(a)
$$t_0 \ge r + l/2$$

(b)
$$t_0 < r + l/2$$

2.6. Case (a). In this case the arguments will be similar to those of [6, 2.3]. Now by (ii) $C^*(t, \phi_t)$ meets $S^{n-1}(L^*)$ whenever 0 < t < r + 1/2. Set $V = \bigcup C(t, \phi_t)$ and $V^* = \bigcup C^*(t, \phi_t)$ where the unions are taken over all $t \in (r, r + 1/2)$. Then V and V* are domains and f maps V* homeomorphically onto V, cf. [10, p. 425]. For each $t \in (r, r + l/2)$ choose a point $x_i^* \in C^*(t, \phi_i) \cap S^{n-1}(L^*)$ and let $\Gamma(t)$ be the family of all paths joining x_i^* and z_i^* in $C^*(t, \phi_i)$. Finally set $\Gamma = \bigcup \Gamma(t)$. Since $|z_i^*| \leq l^*$, we have

$$M(\Gamma) \leq \omega_{n-1} (\log L^*/l^*)^{1-n}.$$

On the other hand, see [9, 10.12],

$$M(f\Gamma) \ge b_n \log\left(\frac{r+l/2}{r}\right)$$

where $b_n > 0$ depends only on *n*. Now $M(f\Gamma) \leq KM(\Gamma)$ yields

$$b_n \log (1 + l/(2r)) \leq K \omega_{n-1} (\log L^*/l^*)^{1-n}$$

Using (2.3) we get

$$b_n \log(1 + 1/(2\alpha(n, K))) \leq K\omega_{n-1} (\log L^*/l^*)^{1-r}$$

which implies

$$l^* \ge L^* \psi(n, K)$$

where $\psi(n, K) > 0$ depends only on *n* and *K*. Since $L^* \to 1$ as $r \to r_0$, the assertion for Case (a) follows.

2.7. Case (b). Choose a point $x_1 \in S^{n-1}(L^*) \cap \partial D_{x_0}$ and let $y_1 = f(x_1)$. Then the topological ball $U = D_{x_0} \cup U(r)$ is mapped by f homeomorphically onto $G = B^n(r) \cup \widehat{CB}^n(y_0, t_0)$. Next we shall replace f by $g \circ f$ where $g : \overline{R}^n \to \overline{R}^n$ is quasiconformal and $gG = B^n(r)$. For this purpose we prove.

2.8. LEMMA. There exists a quasiconformal mapping $g: \overline{R}^n \to \overline{R}^n$ with maximal dilatation $K(g) \leq 7^{n-1}$ such that $gG = B^n(r), g(0) = 0, g(y_0) = y_0$, and $g(y_1) = -y_0$.

PROOF OF THE LEMMA. We may assume that r = 1 and $y_0 = e_1$ and that $y_1 = (a, b, 0, \dots, 0)$ with $b \ge 0$. Points in the 2-plane $P = \{x \in \mathbb{R}^n : x_k = 0, 3 \le k \le n\}$ are treated as complex numbers $z = x_1 + ix_2$. The circles $C_0 = S^{n-1} \cap P$ and $C_1 = S^{n-1}(y_0, t_0) \cap P$ have two points of intersection z_0 and \bar{z}_0 with $\text{Im } z_0 > 0$. Let S denote the sphere which is centered at the point λe_1 on the x_1 -axis and which passes through the points z_0, \bar{z}_0 , and 0; if z_0, \bar{z}_0 and 0 are collinear, then S denotes the (n-1)-plane $x_1 = 0$. Set $C_2 = S \cap P$ and let $\alpha < \pi/2$ denote the angle at which C_1 and C_0 meet at z_0 . A look at the triangle $(0, y_0, z_0)$ shows that $t_0 < 3/2$ implies $\cos \alpha < 3/4$ and hence $2\pi/9 < \alpha < \pi/2$. Let $\beta < \pi$ denote the

angle at which C_0 and C_2 meet at z_0 . Then by considering the triangles ($\lambda e_1, 0, z_0$) and (0, y_0, z_0) it is not hard to see that $\beta = 2\alpha$. Thus $4\pi/9 < \beta < \pi$. Finally, let $\gamma = 2\pi - (\alpha + \beta)$, then $\pi/2 < \gamma < 4\pi/3$.

Let $A : \overline{R}^n \to \overline{R}^n$ be a Möbius-transformation which maps z_0 to $0, \overline{z}_0$ to ∞, y_0 into itself, and the plane P in a sense-preserving way onto itself. Then $A \mid P$ is a linear fractional transformation, $|A(y_1)| \leq 1$, $\arg A(y_1) = \alpha$, |A(0)| = 1, and $\arg A(0) = -\beta$. Furthermore, A, maps G onto a domain bounded by two planes which meet along the (n-2)-plane $\{x \in \mathbb{R}^n : x_1 = x_2 = 0\}$ at an angle $2\pi - \alpha$; the last angle is measured within AG.

Next we use cylindrical coordinates (r, ϕ, z) for points x in \mathbb{R}^n ; $r = \sqrt{x_1^2 + x_2^2}$, $\phi = \arg(x_1 + ix_2)$, and $z = (x_3, \dots, x_n)$, and define a homeomorphism $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ by

$$\Phi(r, \phi, z) = (r, \pi \phi/2\beta, z) \qquad \text{for } -\beta \leq \phi < 0,$$
$$= (r, \pi \phi/\alpha, z) \qquad \text{for } 0 \leq \phi < \alpha,$$
$$= (r, \pi(1 - \alpha/2\gamma + \phi/2\gamma, z) \qquad \text{for } \alpha \leq \phi < \alpha + \gamma$$

and $\Phi(\infty) = \infty$. Then Φ maps AG onto the half space $H = \{x \in \mathbb{R}^n : x_2 < 0\}$, $\Phi(A(y_0)) = e_1$, $\Phi(A(0)) = -e_2$, and $\Phi(A(y_1)) = -\lambda e_1$ for some $\lambda \in [0, 1]$. Since $\pi/2\beta$, π/α , $\pi/2\gamma \in [3/8, 9/2]$ it follows by [9, 16.3] that Φ is of maximal dilatation $K(\Phi) \leq (9/2)^{n-1}$. Let $B : \mathbb{R}^n \to \mathbb{R}^n$ be a Möbius transformation such that BH = $H, BP = P, B(-e_2) = -e_2$ and $0 < B(y_0) = -B(-\lambda e_1)$ where $B(y_0)$ is treated again as a point in the complex plane P. The facts that $B \mid P$ is a linear fractional transformation and that $0 \leq \lambda \leq 1$ give $\sqrt{2} - 1 \leq B(y_0) \leq 1$.

The linear mapping $\Psi: \overline{R}^n \to \overline{R}^n$ defined by $\Psi(x) = (x_1/B(y_0), x_2, \dots, x_n), \Psi(\infty) = \infty$, is quasiconformal with maximal dilatation $K(\Psi) \leq (1 + \sqrt{2})^{n-1}$. Finally let $C: \overline{R}^n \to \overline{R}^n$ be a Möbius transformation such that $CH = B^n, C(-e_2) = 0, C(e_1) = e_1$, and $C(-e_1) = -e_1$. Then $g = C \cdot \Phi \cdot B \cdot \Phi \cdot A$ has the required properties.

2.9. PROOF OF THE THEOREM—CONCLUSION. Let $F = g \cdot f$ with g as in Lemma 2.6. Then F maps $\overline{U}(r) \cup \overline{D}_{i_0} = \overline{U}$ homeomorphically onto $\overline{B}^n(r)$ and so U is the 0-component of $F^{-1}B^n(r)$. Furthermore, $F(x_0) = y_0$, $F(x_1) = -y_0$, F(0) = 0, and $K(F) \leq K(g)K(f) \leq 7^{n-1}K(f)$. To conclude the proof we shall find a lower bound for

$$l_1^* = \inf\{|x| : x \in \partial U\}.$$

The method will be the same as in Case (a).

Let

$$l_1 = \inf\{|F(x)| : |x| = l_1^*\},\$$

then exactly as in 2.2 above

$$r/l_1 \leq \alpha(n, 7^{n-1}K).$$

For $t \in (r, r + l_1)$ and $\phi \in (0, \pi)$ we consider the spherical cap $C(t, \phi)$ and its center z_t , as in 2.4. Let $z'_t = \overline{U} \cap F^{-1}(z_t)$, $C'(t, \phi)$ be the z'_t -component of $F^{-1}C(t, \phi)$ and $\phi_t = \sup\{\phi \in (0, \pi] : F \text{ maps } C'(t, \phi) \text{ homeomorphically onto}$ $C(t, \phi)\}$. Now $C'(t, \phi_t)$ meets $S^{n-1}(L^*)$ for all $t \in (r, r + l_1)$ since otherwise, as in Case (a), $\phi_t = \pi$ and $\overline{C}'(t_1\phi_t)$ would be a topological sphere contained in $\overline{B}^n(L^*)$, which has to meet the set $E' = F^{-1}E$,

$$E = \{sy_0 : -1 \leq s \leq 1\},\$$

at least twice while $\overline{C}(t, \phi_t)$ meets E at a single point. We can now proceed exactly as in Case (a) using path families on the caps $C'(t, \phi_t)$ and $C(t, \phi_t)$, respectively, for $t \in (r, r + l_1)$ and conclude

$$b_n \log(1+1/\alpha(n,7^{n-1}K)) \leq 7^{n-1}K\omega_{n-1}(\log L^*/l_1^*)^{1-n}$$

This yields $l_1^* \ge L^*\beta(n, K)$ where $\beta(n, K) > 0$ depends only on n and K. Letting $r \to r_0$ we have $L^* \to 1$ and thus F and so f is injective in $B^n(\beta(n, K))$. This proves Case (b) and the theorem follows.

2.10. REMARK. Let $\phi(n, K)$ and $\delta(n, K)$ denote the universal radius of injectivity for quasiregular, respectively, quasimeromorphic local homeomorphisms in B^n , n > 2. Clearly $\phi(n, K) \ge \delta(n, K)$ with equality for K = 1. We do not know whether $\phi(n, K) > \delta(n, K)$ for any K > 1 and n > 2.

References

3. F. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393.

4. O. Martio, S. Rickman and J. Väisälä, *Definitions for quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I **448** (1969), 1-40.

5. O. Martio, S. Rickman and J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. AI **465** (1970), 1-13.

^{1.} S. Agard and A. Marden, A removable singularity theorem for local homeomorphisms, Indiana Univ. Math. J. 20 (1970), 455-461.

^{2.} P. P. Belinskii and M. A. Lavrentiev, On locally quasiconformal mappings in space ($n \ge 3$), in Contributions to Analysis, a collection of papers dedicated to Lipman Bers, Academic Press, 1974, pp. 27-30.

6. O. Martio, S. Rickman and J. Väisälä, *Topological and metric properties of quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A 1 488 (1971), 1-31.

7. O. Martio and U. Srebro, Automorphic quasimeromorphic mappings in Rⁿ, Acta. Math. 135 (1975), 221-247.

8. J. Sarvas, Coefficient of injectivity for quasiregular mappings, Duke Math. J. 43 (1976), 147-158.

9. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics 229, Springer-Verlag, 1971.

10. V. A. Zorič, A theorem of M. A. Lavrentiev for space quasiconformal mappings, Mat. Sb. 74 (1967), 417-433 (Russian).

UNIVERSITY OF HELSINKI HELSINKI, FINLAND

AND

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL