UNIVERSAL RADIUS OF INJECTIVITY FOR LOCALLY QUASICONFORMAL MAPPINGS

BY

OLLI MARTIO' AND URI SREBRO

ABSTRACT

If $n > 2$ and if f is a locally quasiconformal mapping from the ball $B'' =$ ${x \in R^n : |x| < 1}$ into $R^n \cup {\infty}$ then f is injective in $B^n(r) = {x \in R^n : |x| < r}$ where $r > 0$ depends only on n and the maximal dilatation of f.

I. Introduction

In this note we consider local homeomorphisms f of bounded dilatation from the unit ball $B'' = \{x \in R^n : |x| < 1\}$ into $\overline{R}^n = R^n \cup \{\infty\}$. In [6, theor. 2.3] it was shown that if $n \ge 3$ and $fB'' \subset R''$, then f is one to one in $B''(r) = \{x \in R'' : |x| <$ r} where r depends only on n and the maximal dilatation of f. The complex functions $z \mapsto (z-1)^m$, $m = 1, 2, \dots$, show that the result is false for $n = 2$. It has been an open problem whether the condition $fB'' \subset R''$ is dispensable. Here we give an affirmative answer to this question and prove

1.1. THEOREM. *Suppose that* $f: B^n \to \overline{R}^n$ *is a quasimeromorphic local homeomorphism. If* $n > 3$ *then f is injective in* $Bⁿ(r)$ *where r* depends only on *n* and the maximal dilatation $K(f)$ of f.

The weaker version [6, theor. 2.3] of the above theorem has been used by several authors to study various properties of quasiregular mappings, see [2, theor. 3], [6, corol. 2.7, 2.8, 2.10 and theor. 2.9], [7, theor. 6.12], and [8]. Now all these results can be extended to the quasimeromorphic case.

In our proof we shall use the methods of [10], [1], and [6, 2.3]. Notation and terminology will be as in [4], [5], and [9] but most of it will be explained in the course of the proof.

^{&#}x27; Supported in part by the Samuel Neaman Fund, Special Year in Complex Analysis, Technion, I.I.T., Haifa, Israel, 1975/76.

Received October 19, 1976

2. Proot ot the theorem

2.1. We may assume $f(0) = 0$. For $r > 0$ we let $U(r)$ denote the 0-component of $f^{-1}B''(r)$. Note that since f is a local homeomorphism, f maps $\bar{U}(r)$ homeomorphically onto $\bar{B}^n(r)$ whenever $\bar{U}(r) \subset B^n$, see [6, lemma 2.2]. Let $r_0 \approx \sup\{r > 0: \overline{U}(r) \subset B^n\}$. Clearly $r_0 > 0$ and by Liouville's theorem for quasiregular mappings, see [4, 7.2], also $r_0 < \infty$. Fix $r \in (0, r_0)$ and set $l^* =$ $\inf\{|x|:x\in\partial U(r)\},L^*=\sup\{|x|:x\in\partial U(r)\},\text{ and } l=\inf\{|f(x)|:|x|=l^* \}.$ Since f is injective in $B^n(l^*)$, it suffices to find a lower bound for l^* in terms of n and $K = K(f)$.

2.2. Suppose that $l < r$. Then $A = U(r) \setminus \overline{U}(l)$ is a ring domain and f maps A quasiconformally onto the spherical ring $B^{n}(r)\bar{B}^{n}(l)$. Both boundary components of A meet the sphere $S^{n-1}(l^*)$, hence a well known capacity estimate for ring domains yields

$$
\operatorname{cap}(U(r), \ \bar{U}(l)) \geq a_n > 0
$$

where a_n depends only on n, see [4, §5], [9, 11.7]. Thus by the capacity inequality for quasiconformal mappings

$$
a_n \leq \text{cap}(U(r), \overline{U}(l)) \leq K \text{ cap}(B^{n}(r), \overline{B}^{n}(l)) = K \omega_{n-1} (\log r/l)^{1-n}
$$

where ω_{n-1} denotes the $(n-1)$ -measure of S^{n-1} . This gives

$$
r/l \leq \alpha(n, K)
$$

which is also true in the case $r = l$.

2.4. Pick $x_0 \in \partial U(r)$ such that $|x_0| = L^*$ and set $y_0 = f(x_0)$. Then $|y_0| = r$. For $t \in (0, r + l)$ and $\phi \in (0, \pi]$ we consider the spherical cap

$$
C(t, \phi) = \{y : |y - y_0| = t, \quad (y_0 - y) \cdot y_0 > rt \cos \phi\}
$$

which lies on the sphere $S^{n-1}(y_0, t)$ and is symmetric with respect to the line segment $J = \{sy_0: -l/r \leq s \leq 1\}$ and meets J at the point $z_i = (r - t)y_0/r$. Let z_i^* be the unique point in $U(r) \cap f^{-1}(z_1)$ and let $C^*(t, \phi)$ be the z^* -component of $f^{-1}C(t, \phi)$. Set

$$
\phi_t = \sup \{ \phi \in (0, \pi] : f \text{ maps } C^*(t, \phi) \text{ homeomorphically onto } C(t, \phi) \}
$$

and

$$
I = \{t \in (0, r + l) : C^*(t, \phi_t) \text{ meets } S^{n-1}(L^*)\}.
$$

Note that $I \neq \emptyset$ since a neighborhood of x_0 is mapped by f homeomorphically onto a neighborhood of y_0 . Hence $t_0 = \sup\{t : t \in I\} > 0$. It was shown in [6, p.5] that if $fB^n \subset R^n$ then $t_0 = r + l$ and $I \supset (r, r + l)$. In our case this cannot be done, however, we shall prove that $I \supset (0, t_0)$ and that if $t_0 < t < r + l$ then $\overline{C}^*(t, \phi_t)$ is the boundary of a domain D_i , which is contained in $B^n(L^*)$ and mapped by f homeomorphically onto $\hat{C}\bar{B}^n(y_0, t) = \bar{R}^n \backslash \bar{B}^n(y_0, t)$. To this end suppose that $t \in (0, r + l)\setminus I$. Then $C^*(t, \phi_t) \subset B^*(L^*)$. Now $C(t\phi_t)$ is simply connected, locally pathwise connected, and since $n \ge 3$ also relatively locally connected, thus by [6, lemma 2.2] f maps $\overline{C}^*(t, \phi_t)$ homeomorphically onto $\overline{C}(t, \phi_t)$. At this point the proof breaks down for $n = 2$ because the punctured circle $C(t, \pi)$ is not relatively locally connected. Since $\overline{C}^*(t, \phi_t)$ is compact in Bⁿ and f is a local homeomorphism and injective in $\bar{C}^*(t, \phi_t)$, it follows, see [10, remark 1, p. 422] that f is injective in a neighborhood of $\overline{C}^*(t, \phi_t)$. Consequently $\phi_t = \pi$ and this means that $\overline{C}^*(t, \phi_t)$ is a topological sphere. Thus the bounded component D_t of $\mathbb{C}\bar{C}^*(t, \phi_t)$ is contained in $B^n(L^*)$. Now f maps D_t either onto $B^n(y_0, t)$ or onto \overline{C} \overline{B} "(y₀, t), and since both domains are simply connected and f is a local homeomorphism sending ∂D_i injectively onto $S^{n-1}(y_0, t)$, the restriction $f | \overline{D}_t$ is a homeomorphism. But $fD_t = B''(y_0, t)$ is impossible because f would be injective in $D_t \cup U(r)$ as $D_t \cap U(r) \neq \emptyset$ and $B''(y_0, t) \cap B''(r)$ is connected, see [10, remark 2, p. 422], while $f(x_0) = y_0$ and $x_0 \notin D_i$. Hence $fD_i = \widehat{\mathsf{CB}}^n(y_0, t)$. Furthermore, if $t' > t$ then $S^{n-1}(y_0, t') \subset fD_t$ and thus $\phi_t = \pi$ and $\overline{C}^*(t', \phi_t) \subset D_t$. Consequently, $t' \notin I$.

- 2.5 We have proved that
- (i) I is an interval,
- (ii) $(0, t_0) \subset I$, and

(iii) for $t_0 < t < r + l$, f maps D, homeomorphically onto $\tilde{C}\overline{B}^n(y_0, t)$. Since $D_i \subset B^n(L^*)$ for $t_0 < t < r + l$, it easily follows that $\phi_n = \pi$ and the bounded component D_{ν} of $C\overline{C}^*(t_0, \phi_{\nu})$ is contained in $B^n(L^*)$, ∂D_{ν} meets $S^{n-1}(L^*)$, and f maps \bar{D}_k homeomorphically onto $CBⁿ(y_0, t_0)$.

We consider two cases:

$$
t_0 \geq r + l/2,
$$

$$
t_0 < r + l/2.
$$

2.6. *Case* (a). In this case the arguments will be similar to those of [6, 2.3]. Now by (ii) $C^*(t, \phi_t)$ meets $S^{n-1}(L^*)$ whenever $0 < t < r + 1/2$. Set $V =$ $U C(t, \phi_t)$ and $V^* = U C^*(t, \phi_t)$ where the unions are taken over all $t \in$ $(r, r + l/2)$. Then V and V^{*} are domains and f maps V^{*} homeomorphically onto

V, cf. [10, p. 425]. For each $t \in (r, r + l/2)$ choose a point $x_i^* \in C^*(t, \phi_i)$ $S^{n-1}(L^*)$ and let $\Gamma(t)$ be the family of all paths joining x^* and z^* in $C^*(t, \phi_t)$. Finally set $\Gamma = \bigcup \Gamma(t)$. Since $|z^*| \leq l^*$, we have

$$
M(\Gamma) \leq \omega_{n-1} (\log L^* / l^*)^{1-n}.
$$

On the other hand, see [9, 10.12],

$$
M(f\Gamma) \geq b_n \log \left(\frac{r + l/2}{r} \right)
$$

where $b_n > 0$ depends only on *n*. Now $M(f\Gamma) \leq KM(\Gamma)$ yields

$$
b_n \log (1 + l/(2r)) \leq K \omega_{n-1} (\log L^* / l^*)^{1-n}.
$$

Using (2.3) we get

$$
b_n \log (1 + 1/(2\alpha(n, K)) \leq K\omega_{n-1} (\log L^*/l^*)^{1-n}
$$

which implies

$$
l^* \geq L^* \psi(n,K)
$$

where $\psi(n,K) > 0$ depends only on *n* and *K*. Since $L^* \rightarrow 1$ as $r \rightarrow r_0$, the assertion for Case (a) follows.

2.7. *Case* (b). Choose a point $x_1 \in S^{n-1}(L^*)$ \cap ∂D_n and let $y_1 = f(x_1)$. Then the topological ball $U = D_{i_0} \cup U(r)$ is mapped by f homeomorphically onto $G = B^{n}(r) \cup \overline{\mathbb{G}}(y_0,t_0)$. Next we shall replace f by $g \circ f$ where $g : \overline{\mathbb{R}}^{n} \to \overline{\mathbb{R}}^{n}$ is quasiconformal and $gG = B''(r)$. For this purpose we prove.

2.8. LEMMA. *There exists a quasiconformal mapping g* : $\overline{R}^n \to \overline{R}^n$ with maxi*mal dilatation* $K(g) \leq 7^{n-1}$ *such that* $gG = B^{n}(r), g(0) = 0, g(y_0) = y_0$, and $g(y_1) = -y_0$.

PROOF OF THE LEMMA. We may assume that $r = 1$ and $y_0 = e_1$ and that $y_1 = (a, b, 0, \dots, 0)$ with $b \ge 0$. Points in the 2-plane $P = \{x \in R^n : x_k = 0, 3 \le k \le 1\}$ n} are treated as complex numbers $z = x_1 + ix_2$. The circles $C_0 = S^{n-1} \cap P$ and $C_1 = S^{n-1}(y_0, t_0) \cap P$ have two points of intersection z_0 and \tilde{z}_0 with Im $z_0 > 0$. Let S denote the sphere which is centered at the point λe_1 on the x₁-axis and which passes through the points z_0 , \bar{z}_0 , and 0; if z_0 , \bar{z}_0 and 0 are colinear, then S denotes the $(n - 1)$ -plane $x_1 = 0$. Set $C_2 = S \cap P$ and let $\alpha < \pi/2$ denote the angle at which C_1 and C_0 meet at z_0 . A look at the triangle $(0, y_0, z_0)$ shows that $t_0 < 3/2$ implies $\cos \alpha < 3/4$ and hence $2\pi/9 < \alpha < \pi/2$. Let $\beta < \pi$ denote the angle at which C_0 and C_2 meet at z_0 . Then by considering the triangles (λe_1 , 0, z_0) and $(0, y_0, z_0)$ it is not hard to see that $\beta = 2\alpha$. Thus $4\pi/9 < \beta < \pi$. Finally, let $\gamma = 2\pi - (\alpha + \beta)$, then $\pi/2 < \gamma < 4\pi/3$.

Let $A: \overline{R}^n \to \overline{R}^n$ be a Möbius-transformation which maps z_0 to $0, \overline{z_0}$ to ∞ , y_0 into itself, and the plane P in a sense-preserving way onto itself. Then $A \mid P$ is a linear fractional transformation, $|A(y_1)| \le 1$, arg $A(y_1) = \alpha$, $|A(0)| = 1$, and arg $A(0) = -\beta$. Furthermore, A, maps G onto a domain bounded by two planes which meet along the $(n-2)$ -plane $\{x \in \mathbb{R}^n : x_1 = x_2 = 0\}$ at an angle $2\pi - \alpha$; the last angle is measured within *AG.*

Next we use cylindrical coordinates (r, ϕ, z) for points x in Rⁿ; $r =$ $\sqrt{x_1^2 + x_2^2}$, $\phi = \arg(x_1 + ix_2)$, and $z = (x_3, \dots, x_n)$, and define a homeomorphism $\Phi : \vec{R}^n \to \vec{R}^n$ by

$$
\Phi(r, \phi, z) = (r, \pi\phi/2\beta, z) \qquad \text{for } -\beta \leq \phi < 0,
$$
\n
$$
= (r, \pi\phi/\alpha, z) \qquad \text{for } 0 \leq \phi < \alpha,
$$
\n
$$
= (r, \pi(1 - \alpha/2\gamma + \phi/2\gamma, z) \qquad \text{for } \alpha \leq \phi < \alpha + \gamma
$$

and $\Phi(\infty) = \infty$. Then Φ maps *AG* onto the half space $H = \{x \in \mathbb{R}^n : x, < 0\}$, $\Phi(A(y_0))=e_1, \Phi(A(0))=-e_2$, and $\Phi(A(y_1))=-\lambda e_1$ for some $\lambda \in [0,1]$. Since $\pi/2\beta$, π/α , $\pi/2\gamma \in [3/8, 9/2]$ it follows by [9, 16.3] that Φ is of maximal dilatation $K(\Phi) \leq (9/2)^{n-1}$. Let $B: \overline{R}^n \to \overline{R}^n$ be a Möbius transformation such that $BH =$ *H*, $BP = P$, $B(-e_2) = -e_2$ and $0 < B(y_0) = -B(-\lambda e_1)$ where $B(y_0)$ is treated again as a point in the complex plane P. The facts that $B \mid P$ is a linear fractional transformation and that $0 \le \lambda \le 1$ give $\sqrt{2}-1 \le B(y_0) \le 1$.

The linear mapping $\Psi : \overline{R}^n \to \overline{R}^n$ defined by $\Psi(x) =$ $(x_1/B(y_0), x_2, \dots, x_n)$, $\Psi(\infty) = \infty$, is quasiconformal with maximal dilatation $K(\Psi) \leq (1 + \sqrt{2})^{n-1}$. Finally let $C : \overline{R}^n \to \overline{R}^n$ be a Möbius transformation such that $CH = Bⁿ, C(-e_2) = 0, C(e_1) = e_1$, and $C(-e_1) = -e_1$. Then $g =$ $C \cdot \Phi \cdot B \cdot \Phi \cdot A$ has the required properties.

2.9. PROOF OF THE THEOREM—CONCLUSION. Let $F = g \cdot f$ with g as in Lemma 2.6. Then F maps $\bar{U}(r) \cup \bar{D}_v = \bar{U}$ homeomorphically onto $\bar{B}^n(r)$ and so U is the 0-component of $F^{-1}B''(r)$. Furthermore, $F(x_0) = y_0, F(x_1) = -y_0, F(0) = 0$, and $K(F) \leq K(g)K(f) \leq 7^{n-1}K(f)$. To conclude the proof we shall find a lower bound for

$$
l_1^* = \inf\{|x| : x \in \partial U\}.
$$

The method will be the same as in Case (a).

Let

$$
l_1 = \inf\{|F(x)|: |x| = l_1^*\},
$$

then exactly as in 2.2 above

$$
r/l_1 \leq \alpha(n, 7^{n-1}K).
$$

For $t \in (r, r + l_1)$ and $\phi \in (0, \pi)$ we consider the spherical cap $C(t, \phi)$ and its center z_t , as in 2.4. Let $z_t' = \overline{U} \cap F^{-1}(z_t)$, $C'(t, \phi)$ be the z'_t -component of $F^{-1}C(t, \phi)$ and $\phi_t = \sup{\{\phi \in (0, \pi] : F \text{ maps } C'(t, \phi) \text{ homeomorphically onto }\}$ *C*(*t,* ϕ)}. Now *C'*(*t,* ϕ *_t)* meets *S*^{*n*-1}(*L*^{*}) for all *t* ∈ (*r, r* + *l₁*) since otherwise, as in Case (a), $\phi_i = \pi$ and $\bar{C}'(t_1 \phi_i)$ would be a topological sphere contained in $\overline{B}^n(L^*)$, which has to meet the set $E' = F^{-1}E$.

$$
E = \{sy_0: -1 \leq s \leq 1\},\
$$

at least twice while $\bar{C}(t, \phi_t)$ meets E at a single point. We can now proceed exactly as in Case (a) using path families on the caps $C'(t, \phi_t)$ and $C(t, \phi_t)$, respectively, for $t \in (r, r + l_1)$ and conclude

$$
b_n \log (1 + 1/\alpha (n, 7^{n-1}K)) \le 7^{n-1}K\omega_{n-1} (\log L^*/l^*)_1^{1-n}.
$$

This yields $l^* \geq L^* \beta(n,K)$ where $\beta(n,K) > 0$ depends only on *n* and *K*. Letting $r \rightarrow r_0$ we have $L^* \rightarrow 1$ and thus F and so f is injective in $B^n(\beta(n,K))$. This proves Case (b) and the theorem follows.

2.10. REMARK. Let $\phi(n, K)$ and $\delta(n, K)$ denote the universal radius of injectivity for quasiregular, respectively, quasimeromorphic local homeomorphisms in Bⁿ, $n > 2$. Clearly $\phi(n, K) \ge \delta(n, K)$ with equality for $K = 1$. We do not know whether $\phi(n, K) > \delta(n, K)$ for any $K > 1$ and $n > 2$.

REFERENCES

1. S. Agard and A. Marden, *A removable singularity theorem for local homeomorphisms,* Indiana Univ. Math. J. 20 (1970), 455-461.

2. P. P. Belinskii and M. A. Lavrentiev, *On locally quasiconformal mappings in space* ($n \ge 3$), *in Contributions to Analysis,* a collection of papers dedicated to Lipman Bers, Academic Press, 1974, pp. 27-30.

3. F. Gehring, *Rings and quasiconformal mappings in space,* Trans. Amer. Math. Soc. 103 (t962), 353-393.

4. O. Martio, S. Rickman and J. Väisälä, *Definitions for quasiregular mappings*, *Ann. Acad.* Sci. Fenn. Set. A I 448 (1969), 1-40.

5. O. Martio, S. Rickman and J. Väisälä, *Distortion and singularities of quasiregular mappings*, Ann. Acad. Sci. Fenn. Set. A I 465 (1970), 1-13.

6. O. Martio, S. Rickman and J. Väisälä, *Topological and metric properties of quasiregular mappings,* Ann. Acad. Sci. Fenn. Ser. A 1 488 (1971), 1-31.

7. O. Martio and U. Srebro, *Automorphic quasimeromorphic mappings in R n,* Acta. Math. 135 (1975), 221-247.

8. J. Sarvas, *Coefficient of injectivity for quasiregular mappings,* Duke Math. J. 43 (1976), 147-158.

9. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics 229, Springer-Verlag, 1971.

10. V. A. Zorič, A theorem of M. A. Lavrentiev for space quasiconformal mappings, Mat. Sb. 74 (1967), 417-433 (Russian).

UNIVERSITY OF HELSINKI HELSINKI, FINLAND

AND

TECHNION--ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL