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UNIVERSAL RADIUS OF INJECTIVITY FOR 
LOCALLY QUASICONFORMAL MAPPINGS 

BY 

OLLI MARTIO '  AND URI SREBRO 

ABSTRACT 

If n > 2  and if [ is a locally quasiconformal mapping from the ball B " =  
{x • R" :Ix I < 1}into R" U {~}then f is injective in B"(r)= {x ~ R" :Ix I < r} 
where r > 0  depends only on n and the maximal dilatation of f. 

I. Introduction 

In this note we consider local homeomorphisms f of bounded dilatation from 

the unit ball B"  = {x ~ R"  :[ x t < 1} in to/~"  = R" U {oo}. In [6, theor. 2.3] it was 

shown that i fn => 3 and /B"  C R " , t h e n / i s  one to one in B" ( r )  = {x E R" :Ix [< 

r} where r depends only on n and the maximal dilatation of [. The complex 

functions z ~ (z - 1)", m = 1,2, �9 �9 show that the result is false for n = 2. It has 

been an open problem whether the condition fB"  C R" is dispensable. Here we 

give an affirmative answer to this question and prove 

1.1. THEOREM. Suppose that / :B"- - -* /~"  is a quasimeromorphic local 

homeomorphism. If n > 3 then [ is injective in B" (r) where r depends only on n 

and the maximal dilatation K (f) of[. 

The weaker version [6, theor. 2.3] of the above theorem has been used by 

several authors to study various properties of quasiregular mappings, see [2, 

theor. 3], [6, corol. 2.7, 2.8, 2.10 and theor. 2.9], [7, theor. 6.12], and [8]. Now all 

these results can be extended to the quasimeromorphic case. 

In our proof we shall use the methods of [10], [1], and [6, 2.3]. Notation and 

terminology will be as in [4], [5], and [9] but most of it will be explained in the 

course of the proof. 
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2. Proot ot the theorem 

2.1. We may assume [(0) = 0. For r > 0 we let U(r) denote the 0-component 

of [- 'B"(r) .  Note that since f is a local homeomorphism, [ maps U(r)  

homeomorphically onto /3"(r) whenever U ( r ) C B " ,  see [6, lemma 2.2]. Let 

ro=sup{r>O:U(r )CB"} .  Clearly ro>O and by Liouville's theorem for 

quasiregular mappings, see [4, 7.2], also ro<~. Fix r E ( 0 ,  r0) and set l * =  

inf{ I x l : x ~ 0 U ( r ) } , L * = s u p { I x l : x E O U ( r ) } ,  and l = i n f {  I [ ( x ) l : l x l = l * } .  

Since [ is injective in B"(l*), it suffices to find a lower bound for t* in terms of n 

and K = K([). 

2.2. Suppose that l < r. Then A = U(r)\  U(l)  is a ring domain and f maps A 

quasiconformally onto the spherical ring B"(r)\B"(l) .  Both boundary compo- 

nents of A meet the sphere S"-~(l*), hence a well known capacity estimate for 

ring domains yields 

cap (U(r) ,  (J(l)) >= a. > 0 

where a,  depends only on n, see [4, w [9, 11.7]. Thus by the capacity inequality 

for quasiconformal mappings 

a, ~ cap(U(r) ,  O(l))_~ K cap(B"(r ) , /3"( / ) )  = Koo._,(Iogr/l)'-" 

where w,_~ denotes the (n - 1)-measure of S"- ' .  This gives 

(2.3) r/l <= or(n, K) 

which is also true in the case r = / .  

2.4. Pick Xo E OU(r) such that Ix01 = L* and set yo = f(Xo). Then I yo [ = r. For 
t ~ (0, r + l) and ,;b E (0, rr] we consider the spherical cap 

C(t, 4 a ) = { y : l y - y o l = t ,  (y0 -  y ) .  y0 > rt cos ~b} 

which lies on the sphere S"-l(y~, t) and is symmetric with respect to the line 

segment J ----- {Syo : - -  I/r <-<_ s <_ 1} and meets J at the point z, = (r - t)y,,/r. Let z *̀  

be the unique point in U(r)  n f-~(z,) and let C*(t, ~b) be the z *,-component of 

f - 'C(t ,  el,). Set 

and 

~b, = sup {~b E (0, 7r] : f  maps C*(t, ok) homeomorphically onto C(t, ~b)} 

I = {t E (0, r + 1): C*(t, cb,) meets S"-'(L*)}. 
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Note that I ~  ~ since a neighborhood of x0 is mapped by f homeomorphically 

onto a neighborhood of yo. Hence to = sup{t : t E I} > 0. It was shown in [6, p.5] 

that if fB"  C R"  then to = r + 1 and I D (r, r + 1). In our case this cannot be done, 

however, we shall prove that I D (0, to) and that if to< t < r + l then C*(t, 4b,) is 

the boundary of a domain D, which is contained in B " ( L * )  and mapped by f 

homeomorphically onto C/7"(yo, t) = R"\B"(yo ,  t). To this end suppose that 

t E (0, r + l)\I. Then C*(t, 4',) C B"(L*). Now C(t4',) is simply connected, locally 

pathwise connected, and since n _-> 3 also relatively locally connected, thus by [6, 

lemma 2.2] f maps C*(t, 4',) homeomorphically onto C(t, 4',). At this point the 

proof breaks down for n = 2 because the punctured circle C(t, zr) is not 

relatively locally connected. Since C*(t, 4',) is compact in B" and f is a local 

homeomorphism and injective in C'*(t, 4',), it follows, see [10, remark 1, p. 422] 

that f is injective in a neighborhood of C*(t, 4',). Consequently 4', = zr and this 

means that C'*(t, 4',) is a topological sphere. Thus the bounded component D, of 

Cc'*(t, 4',) is contained in B"(L*).  Now f maps D, either onto B"(yo, t) or onto 

C/3"(yo, t), and since both domains are simply connected and f is a local 

homeomorphism sending aD, injectively onto S"-'(yo, t), the restriction f l /5 ,  is 

a homeomorphism. But fD, = B"(yo, t) is impossible because f would be 

injective in D, U U(r) as D, n U ( r ) ~ O  and B"(yo, t) N B"(r)  is connected, 

see [10, remark 2, p. 422], while f(xo) = yo and x0~ D,. Hence fD, = C/3"(yo, t). 

Furthermore, if t ' >  t then S"-'(yo, t') CfD, and thus 4',, = 7r and (~*(t', 4',,) CD,. 

Consequently, t' ~ I. 

2.5 We have proved that 

(i) I is an interval, 

(ii) (0, to) CI, and 
(iii) for to< t < r +  l, f maps D, homeomorphically onto C/3"(yo, t). Since 

D, CB"(L*)  for to< t < r +  l, it easily follows that 4,,o = zr and the bounded 

component D~ of Cc*(to, 4'~) is contained in B"(L*),  OD, meets S"-'(L*), and f 

maps s homeomorphically onto CB"(yo, to). 

We consider two cases: 

(a) to >= r + 1/2, 

(b) to < r + 1/2. 

2.6. Case (a). In this case the arguments will be similar to those of [6, 2.3]. 

Now by (ii) C*(t, 4',) meets S"-'(L*) whenever O < t < r + l / 2 .  Set V =  

U C(t, 4',) and V * =  U C*(t, 4',) where the unions are taken over all t E 

(r, r + I/2). Then V and V* are domains and f maps V* homeomorphically onto 
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V, cf. [10, p. 425]. For  each t E ( r , r + l / 2 )  choose a point  x* ,EC*( t ,  cb,)n 
S"-'(L*) and let F(t)  be  the family of all paths  joining x* and z* in C*(t, 4),). 

Finally set F =  U F ( t ) .  Since I z *, l =< l*, we have  

M ( I ' )  =< o.,,, , ( log L*/I*)' ". 

On the o the r  hand, see [9, 10.12], 

M ( f F )  > b, Iog (r +r 1/----~2) 

where  b, > 0 depends  only on n. Now M ( f F )  =< K M ( F )  yields 

b, log(1 + I/(2r)) < Ko), ~ (logL*/l*)'-". 

Using (2.3) we get 

b, log(1 + 1/(2a(n,  K) )  < - Kw,_, (log L*/l*) ~-" 

which implies 

l* >= L*~b(n,K) 

where  ~ b ( n , K ) > 0  depends  only on n and K. Since L*- -* I  as r---~ro, the 

assert ion for  Case (a) follows. 

2.7. Case (b). Choose  a point  x, C S"-~(L *) n OD~, and let yl = f(xO. Then  

the topological  ball U = D~, U U(r) is m a p p e d  by f homeomorph ica l l y  on to  

G = B"(r)  U G/3"(y,,, to). Next  we shall replace  f by g o f  where  g : /~"  ~ / ~ "  is 

quas iconformal  and gG = B"(r).  For  this purpose  we prove.  

2.8. LEMMA. There exists a quasiconformal mapping g : R"  --* R"  with maxi- 
mal dilatation K(g)=<7"  z such that g G = B " ( r ) , g ( O ) = O , g ( y o ) = y o ,  and 
g(y , )  = _ y,,. 

PROOV OF THE LEMMA. We may assume that  r = 1 and y, ,= e, and that  

y~ = ( a , b , 0 , . . . , 0 )  with b => 0. Points in t h e 2 - p l a n e  P = {x E R "  : xk = 0,3=< k =< 

n} are t rea ted  as complex  number s  z = x~ + ix2. T h e  circles C,, = S "-J n P and 

CL = S"- '(y, , ,  t,,) n P have  two points  of  intersect ion zo and :?,, with Im z~ > 0. 

Let  S deno te  the sphere  which is cen te red  at the point  Ae, on the x,-axis and 

which passes through the points  z,,, .%, and 0; if z,,, z?o and 0 are colinear,  then S 

deno tes  the (n - 1)-plane x~ = 0. Set C2 = S N P and let a < 7r/2 deno te  the 

angle at which C~ and Co meet  at z,,. A look at the tr iangle (0, y,,, z0) shows that  

t o < 3 / 2  implies c o s a  < 3 / 4  and hence 27 r /9<  a < ~'/2. Let /3 < 7r denote  the 
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angle at which Co and C2 meet  at z0. Then  by considering the tr iangles (Ae,, 0, z0) 

and (0, y,,, zo) it is not hard  to see that  /3 = 2a.  Thus  47r/9 < / 3  < 7r. Finally, let 

= 2rr - (a  +/3) ,  then 7r/2 < y < 47r/3. 

Let  A : /~"  ~ / ~ "  be  a M6bius - t r ans fo rma t ion  which maps  z,, to 0, L, to o0, y0 

into itself, and the plane P in a sense-preserving way on to  itself. Then  A I P is a 

l inear fract ional  t r ans format ion ,  I A(y,)I <-- 1, a r g A ( y 0  = a, 1A(0)I = 1, and 

arg A (0) = - / 3 .  F u r t h e r m o r e ,  A, maps  G onto  a domain  b o u n d e d  by two planes 

which mee t  along the (n - 2)-plane {x E R "  : x, = x2 = 0} at an angle 2~" - a ; the 

last angle is measu red  within AG. 

Next  we use cylindrical coord ina tes  (r,c~,z) for points  x in R " ;  r = 

~/x~ + x~, 4~ = arg (x, + ix2), and z = (x3," �9 ", x .) ,  and define a h o m e o m o r p h i s m  

cla : _if" ---~/~" by 

qb(r, <b, z )  = (r, 7r4,/2/3, z )  for  - / 3 ~ b < 0 ,  

= (r, 7rqb/a, z )  for 0 ~ ~ < a, 

= (r, rr(1 - c~/2y + c#/27, z) for o~ -<_ ~b < a + 7 

and qb(~)= ~. Then  qb maps  A G  onto  the half space H = {x E R"  : x2<0} ,  

�9 (A (y,,))= e,, qb(A (0 ) )=  - e2, and ~ ( A  (Y0)=  - he, for  some  A E [0, 1]. Since 

7r/213, ~/a,  7r/2y ~ [3/8, 9/2] it follows by [9, 16.3] that �9 is of maximal  dilatat ion 

K ( ~ ) =  < (9/2) "-~. Let  B :/~"---~/~" be  a M6bius  t r ans fo rmat ion  such that  BH = 
14, BP = P, B ( -  e2) = - e2 and 0 <  B(y,,) = - B ( -  he 0 where  B(y,,) is t rea ted  

again as a point  in the complex  p lane  P. The  facts that  B I P is a l inear  fract ional  

t r ans fo rmat ion  and that  0 N  h - 1 give ~ / 2 -  1 =< B ( y . ) =  1. 

T h e  l inear mapp ing  qt : /~ -  ~ / ~ -  def ined by xIt(x ) -- 

(x , /B(yo) ,X2, . . . ,x . ) ,q ' (~)=~,  is quas iconformal  with maximal  di latat ion 

K(q*)-<_ (1 + X/2)"- ' .  Finally let C : /~"  --*/~" be  a M6bius  t r ans fo rmat ion  such 

that  C H = B " , C ( - e 2 ) = O , C ( e , ) = e , ,  and C ( -  e , ) =  - e,. Then  g =  

C �9 qb �9 B �9 qb �9 A has the requi red  proper t ies .  

2.9. PRoof  OFTHE THEOREM--CoNcLUSION. Let  F = g �9 f with g as in L e m m a  

2.6. Then  F maps  IQ(r) U /3~ = 0 h o m e o m o r p h i c a l l y  o n t o / 3 " ( r )  and so U is 

the 0 - c o m p o n e n t  of F 'B"(r). F u r t h e r m o r e ,  F(xo)= yo, F ( x , ) =  - y o ,  F ( 0 ) =  0, 

and K(F) <= K(g)K( f )  <= 7" 'K(f).  T o  conclude the p roof  we shall find a lower 

bound  for  

l* = inf{[ x I: x ~ aU}. 
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T h e  m e t h o d  will be  the same  as in Case (a). 

Let  

l~ = inf{ I F ( x ) l : l x  I = l*~}, 

then exactly as in 2.2 above  

r/l~ _-< a (n, 7"-1K).  

For  t E (r, r + 11) and ~b E (0, 7r) we consider  the spherical  cap C(t, cb) and its 

cen te r  z,, as in 2.4. Let  z', = t? n F-~(z,) ,C'(t ,~b) be the z ; - c o m p o n e n t  of 

F-1C(t,  •) and ~b, = sup{th E (0, ~-] : F maps  C'(t, (b) h o m e o m o r p h i c a l l y  on to  

C(t, ~b)}. Now C'(t, ~,) mee t s  S ' -~(L *) for  all t E (r, r + Iz) since otherwise ,  as in 

Case (a), 6, = rr and C'(q~b,) would be a topological  sphere  con ta ined  in 

"(L*),  which has to mee t  the set E ' =  F-~E, 

E = {syo: - 1_~ s <-_ 1}, 

at least twice while 6'(t, t~,) mee t s  E at a single point.  We  can now proceed  

exactly as in Case (a) using pa th  families on the caps C'(t ,  O,) and C(t, ~b,), 

respect ively,  for  t E (r, r + l~) and conclude 

b, log (1 + 1/a  (n, 7"-1K))  ~ 7n-lKto, ~ (log L*/l*~) ~-". 

This yields l * ~ L * f l ( n , K )  where  [3 (n ,K)>O depends  only on n and K. 

Let t ing  r-~ro we have  L*--~ 1 and  thus F and so f is injective in B " ( f l ( n , K ) ) .  

This p roves  Case (b) and the t h e o r e m  follows. 

2.10. REMARK. Let  ~b(n ,K)  and 8 ( n , K )  deno te  the universal  radius of  

injectivity for  quasiregular ,  respect ively,  q u a s i m e r o m o r p h i c  local h o m e o m o r p h -  

isms in B",  n > 2. Clear ly ~b(n, K )  ~ t~(n, K )  with equal i ty for  K = 1. We do not 

know whe the r  ~ b ( n , K ) > 8 ( n , K )  for  any K > I  and n > 2 .  
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