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UNIVERSAL RADIUS OF INJECTIVITY FOR
LOCALLY QUASICONFORMAL MAPPINGS

BY
OLLI MARTIQ" AND URI SREBRO

ABSTRACT

If n>2 and if f is a locally quasiconformal mapping from the ball B" =
{x€R":[x|<1}into R" U {»}then fis injectivein B"(r)={x € R":|x | < r}
where r >0 depends only on n and the maximal dilatation of f.

1. Introduction

In this note we consider local homeomorphisms f of bounded dilatation from
the unitball B" = {x € R":{x | < 1}into R" = R" U {o}. In [6, theor. 2.3] it was
shown that if n Z3andfB" CR", thenfisone tooneinB"(r)={x ER":|x|<
r} where r depends only on n and the maximal dilatation of f. The complex
functions z » (z — 1)",m = 1,2, - - -, show that the result is false for n = 2. It has
been an open problem whether the condition fB" CR" is dispensable. Here we
give an affirmative answer to this question and prove

1.1. THEOREM. Suppose that f:B"— R" is a quasimeromorphic local
homeomorphism. If n >3 then f is injective in B"(r) where r depends only on n
and the maximal dilatation K(f) of f.

The weaker version [6, theor. 2.3] of the above theorem has been used by
several authors to study various properties of quasiregular mappings, see 2,
theor. 3], {6, corol. 2.7, 2.8, 2.10 and theor. 2.9], {7, theor. 6.12], and [8]. Now all
these results can be extended to the quasimeromorphic case.

In our proof we shall use the methods of [10], [1], and [6, 2.3]. Notation and
terminology will be as in [4], [5], and [9] but most of it will be explained in the
course of the proof.

” Supported in part by the Samuel Neaman Fund, Special Year in Complex Analysis, Technion,
[.1.T., Haifa, Israel, 1975/76.
Received October 19, 1976

17



18 O. MARTIO AND U. SREBRO Israel J. Math.

2. Proof of the theorem

2.1. We may assume f(0) = 0. For r >0 we let U(r) denote the 0-component
of f"'B"(r). Note that since f is a local homeomorphism, f maps U(r)
homeomorphically onto B"(r) whenever U(r)CB", see [6, lemma 2.2]. Let
ro=sup{r>0:U(r)CB"}. Clearly r,>0 and by Liouville’s theorem for
quasiregular mappings, see [4, 7.2, also ro<w. Fix r&€(0,r) and set [*=
inf{lx|:x € U(r)}, L* =sup{|x |:x €3U(r)}, and [=inf{{f(x)|:|x]|=1*}.
Since f is injective in B"(I*), it suffices to find a lower bound for {* in terms of n
and K = K(f).

2.2. Suppose that I < r. Then A = U(r)\U(/) is a ring domain and f maps A
quasiconformally onto the spherical ring B"(r)\ B" (/). Both boundary compo-
nents of A meet the sphere S” '(/*), hence a well known capacity estimate for
ring domains yields

cap(U(r), U(1)= a, >0

where a, depends only on n, see {4, §5], [9, 11.7]. Thus by the capacity inequality
for quasiconformal mappings

a, =cap(U(r), U(l)) = K cap(B"(r), B"(I)) = Kw._,(logr/l)' "
where w,.-, denotes the (n — 1)-measure of S$"~'. This gives
(2.3) r/l = a(n, K)
which is also true in the case r = L.
2.4. Pick xo€ aU(r) such that | x,| = L* and set yo = f(xo). Then | y,| = r. For
t€(©,r+1)and ¢ € (0, 7] we consider the spherical cap

Ctd)={y:ly—yol=t  (yo—y) yo>rt cos b}

which lies on the sphere S$" '(yo,¢) and is symmetric with respect to the line
segment J = {sy,: — I/r = s = 1} and meets J at the point z, = (r — t)y,/r. Let z*
be the unique point in U(r) N f7'(z,) and let C*(1, ¢) be the z *-component of
fC(t, ¢). Set

b =sup{¢ € (0, 7]: f maps C*(t, $) homeomorphically onto C(s, )}
and

I={te,r+1): C*@t, ) meets S"'(L*)}.
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Note that I# & since a neighborhood of x, is mapped by f homeomorphically
onto a neighborhood of y,. Hence t, =sup{t: t € I} > 0. It was shown in [6, p.5]
that if fB" CR" then to=r+ [ and I D (r,r + 1). In our case this cannot be done,
however, we shall prove that I D (0, to) and that if t,<t <r + [ then C*(t, ) is
the boundary of a domain D, which is contained in B"(L*) and mapped by f
homeomorphically onto CE"(yo,t)= R™\B"(yo, ). To this end suppose that
t € (0,r+ D\IL Then C*(t,¢.) CB"(L*). Now C(t¢,) is simply connected, locally
pathwise connected, and since n = 3 also relatively locally connected, thus by [6,
lemma 2.2] f maps C*(t, ¢,) homeomorphically onto C(t, ¢.). At this point the
proof breaks down for n =2 because the punctured circle C(t,7) is not
relatively locally connected. Since C*(t, ¢,) is compact in B" and f is a local
homeomorphism and injective in C*(4, ¢.), it follows, see [10, remark 1, p. 422]
that f is injective in a neighborhood of C*(t, ¢:). Consequently ¢, = 7 and this
means that C*(t, ¢,) is a topological sphere. Thus the bounded component D, of
CC_'*(t, ¢,) is contained in B"(L*). Now f maps D, either onto B"(y,, ) or onto
CE"(yo, t), and since both domains are simply connected and f is a local
homeomorphism sending 8D, injectively onto S"'(y,, t), the restriction f| D, is
a homeomorphism. But fD, = B"(y,, t) is impossible because f would be
injective in D, U U(r) as D, N U(r) # and B"(yo,t) N B"(r) is connected,
see [10, remark 2, p. 422], while f(xo) = yo and x, & D.. Hence fD, = CE"(yO, t).
Furthermore, if ¢’ >t then $”"'(yo, t') C fD, and thus ¢, = 7 and C*(¢', ¢.) C D..
Consequently, t'& I.

2.5 We have proved that

(i) I is an interval,

(ii)) (0,4)CI, and

(iii) for tv<t<r+1 f maps D, homeomorphically onto CE"(yo,t). Since
D, CB"(L*) for t,<t <r+1 it easily follows that ¢, = 7 and the bounded
component D, of CC_‘*(t(,, ¢,) is contained in B"(L*), 4D, meets $"'(L*), and f
maps D, homeomorphically onto CB"(yn, to).

We consider two cases:

(a) th=r+1/2,
(®) to<r+1/2.

2.6. Case (a). In this case the arguments will be similar to those of [6, 2.3].
Now by (ii) C*(t,¢) meets S"'(L*) whenever 0<t<r+1/2. Set V=
U C(t,¢.) and V*= U C*(t, ) where the unions are taken over all 1 €
(r,r +1/2). Then V and V* are domains and f maps V* homeomorphically onto
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V, cf. {10, p. 425]. For each t € (r,r +1/2) choose a point x% € C*(t, ) N
S$"7'(L*) and let I'(¢) be the family of all paths joining x* and z % in C*(t, ¢).
Finally set I'= U I'(¢). Since | z%| = [*, we have

M(D) = w,_, (log L*/1*)"".

On the other hand, see [9, 10.12],
M(fT)= b, log (ﬁr-”—2>

where b, >0 depends only on n. Now M (fI')= KM(I') yields
b. log (1 +1/(2r)) = Kw,-, (log L*/1*)'™",
Using (2.3) we get
b. log(1+1/Qa(n, K)) = Kw,-, (log L*/[*)"™"
which implies

1*= L*y(n, K)

where ¢(n, K)>0 depends only on n and K. Since L*—>1 as r—r,, the
assertion for Case (a) follows.

2.7. Case (b). Choose a point x, € $""'(L*) N 8D, and let y, = f(x,). Then
the topological ball U = D, U U(r) is mapped by f homeomorphically onto
G=B"(r)u CE"(y(,, 1,). Next we shall replace f by gof where g: R" — R" is
quasiconformal and gG = B"(r). For this purpose we prove.

2.8. LEMMA. There exists a quasiconformal mapping g : R" — R" with maxi-
mal dilatation K(g)=7""' such that gG = B"(r),g(0)=0,g(y.)=y,, and
gy =~y

ProOF OF THE LEmMmA. We may assume that r=1 and y,=e, and that
yi=(a, b0,---,0) with b = 0. Pointsin the 2-plane P={x ER" :x, =0,3=k =
n} are treated as complex numbers z = x, + ix,. The circles C,= 8"’ N P and
C. = 8""'(yo, ta} N P have two points of intersection z, and Z, with Im z,>0.
Let S denote the sphere which is centered at the point Ae, on the x,-axis and
which passes through the points z,, Z,, and 0; if z,, Z, and 0 are colinear, then S
denotes the (n — 1)-plane x,=0. Set C;=S5 N P and let a < 7/2 denote the
angle at which C, and C, meet at z,. A look at the triangle (0, yo, z,) shows that
to<3/2 implies cosa < 3/4 and hence 27/9<a < /2. Let B < m denote the
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angle at which C, and C; meet at z,. Then by considering the triangles (Ae,, 0, z,)
and (0, y,, zy) it is not hard to see that B = 2a. Thus 47/9 < 8 < 7. Finally, let
v =27 —(a+B), then w/2 <y <4w/3.

Let A:R" - R" be a Mbius-transformation which maps 2z, to 0, Z, to o, y,
into itself, and the plane P in a sense-preserving way onto itself. Then A I Pisa
linear fractional transformation, |A(y)|=1,argA(y)=a,|A(0)|=1, and
arg A(0) = — B. Furthermore, A, maps G onto a domain bounded by two planes
which meet along the (n ~2)-plane {x € R" : x, = x, = 0} at an angle 27 — a; the
last angle is measured within AG.

Next we use cylindrical coordinates (r,¢,z) for points x in R"; r=

Vxi+x3, ¢ = arg (x, + ix;), and z = (xs," " ", X.), and define a homeomorphism
®:R"—>R" by
O(r, ¢, 2) = (r, /2P, 2) for - =¢ <0,
=(r, mdla, z) for0< ¢ < a,

=(r,a(l1—a2y+ ¢/2v,2) forasd<a+ty

and ®(x)=c. Then ® maps AG onto the half space H ={x € R":x, <0},
P(A (yo)) = e, D(A(0)) = —e,, and P(A (y,)) = — Ae, for some A €0, 1]. Since
2B, 7la, w2y €[3/8,9/2] it follows by [9, 16.3] that ® is of maximal dilatation
K(®)=(9/2)""". Let B:R" — R" be a M&bius transformation such that BH =
H, BP =P, B(—e,)= —e; and 0 < B(ys) = — B(— Ae,) where B(y,) is treated
again as a point in the complex plane P. The facts that B | P is a linear fractional
transformation and that 0= X =1 give V2-1= B(y)=1.

The linear mapping ¥:R"—>R" defined by Y(x)=
(x1/B(yo), X2, * * *, X, ), ¥(®) =, is quasiconformal with maximal dilatation
K(W)=(1+V2)""'. Finally let C:R"— R" be a Mobius transformation such
that CH=B",C(—e;)=0,C(e,))=e¢;, and C(—e)=—e,. Then g=
C-®-B-®d-A has the required properties.

2.9. PrOOF OF THE THEOREM—CONCLUSION. Let F = g - f with g as in Lemma
2.6. Then F maps U(r) U D, = U homeomorphically onto B"(r) and so U is
the 0-component of F 'B"(r). Furthermore, F(xo) = yo, F(x;) = ~ yo, F(0) =0,
and K(F) = K(g)K(f)=7""'K(f). To conclude the proof we shall find a lower
bound for

Y=inf{|x|:x € U}
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The method will be the same as in Case (a).
Let

L=inf{| F(x)|:|x|= 1%},
then exactly as in 2.2 above
r/l, = a(n,7"'K).

For t €(r,r + 1) and ¢ € (0, ) we consider the spherical cap C(t, ¢) and its
center z, as in 2.4. Let zi=U N F'(z,),C'(t, ) be the zi-component of
F7'C(t,¢) and ¢, = sup{¢ € (0, w]: F maps C'(t, #) homeomorphically onto
C(t, ¢)}. Now C'(t, ¢,) meets S"~'(L*) for all t € (r, r + 1,) since otherwise, as in
Case (a), ¢ == and C'(ti¢) would be a topological sphere contained in
B"(L*), which has to meet the set E'= F™'E,

E ={sys: —1=s=1},

at least twice while C(t, ¢,) meets E at a single point. We can now proceed
exactly as in Case (a) using path families on the caps C'(t, ¢.) and C(t, ¢),
respectively, for ¢t € (r,r + 1) and conclude

b, log(1+ 1/a(n, 7" K)) = 7" Kw._, (log L*/1*))'™

This yields /1= L*B(n, K) where B(n,K)>0 depends only on n and K.
Letting r — r, we have L*— 1 and thus F and so f is injective in B"(B8(n, K)).
This proves Case (b) and the theorem follows.

2.10. ReMark. Let ¢(n, K) and 8(n, K) denote the universal radius of
injectivity for quasiregular, respectively, quasimeromorphic local homeomorph-
isms in B", n > 2. Clearly ¢(n, K)= 8(n, K) with equality for K = 1. We do not
know whether ¢(n, K)> 8(n, K) for any K >1 and n >2.
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